(1)

International Baccalaureate
Baccalauréat International
Bachillerato Internacional

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Thursday 20 May 2010 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(x)=2 \mathrm{e}^{x}-\mathrm{e}^{-x} .
$$

(a) Show that f is a bijection.
(b) Find an expression for $f^{-1}(x)$.
2. [Maximum mark: 10]

The relation R is defined for 2×2 matrices such that $\boldsymbol{A} R \boldsymbol{B}$ if and only if there exists a non-singular matrix \boldsymbol{H} such that $\boldsymbol{A H}=\boldsymbol{H} \boldsymbol{B}$.
(a) Show that R is an equivalence relation.
(b) Given that \boldsymbol{A} is singular and $\boldsymbol{A} R \boldsymbol{B}$, show that \boldsymbol{B} is also singular.
3. [Maximum mark: 14]
(a) Consider the set $A=\{1,3,5,7\}$ under the binary operation $*$, where $*$ denotes multiplication modulo 8 .
(i) Write down the Cayley table for $\{A, *\}$.
(ii) Show that $\{A, *\}$ is a group.
(iii) Find all solutions to the equation $3 * x * 7=y$. Give your answers in the form (x, y).
(Question 3 continued)
(b) Now consider the set $B=\{1,3,5,7,9\}$ under the binary operation \otimes, where \otimes denotes multiplication modulo 10 . Show that $\{B, \otimes\}$ is not a group.
(c) Another set C can be formed by removing an element from B so that $\{C, \otimes\}$ is a group.
(i) State which element has to be removed.
(ii) Determine whether or not $\{A, *\}$ and $\{C, \otimes\}$ are isomorphic.
4. [Maximum mark: 13]

The permutation p_{1} of the set $\{1,2,3,4\}$ is defined by

$$
p_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

(a) (i) State the inverse of p_{1}.
(ii) Find the order of p_{1}.
(b) Another permutation p_{2} is defined by

$$
p_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 4 & 1
\end{array}\right)
$$

(i) Determine whether or not the composition of p_{1} and p_{2} is commutative.
(ii) Find the permutation p_{3} which satisfies

$$
p_{1} p_{3} p_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right) .
$$

5. [Maximum mark: 13]

Let G be a finite cyclic group.
(a) Prove that G is Abelian. [4 marks]
(b) Given that a is a generator of G, show that a^{-1} is also a generator. [5 marks]
(c) Show that if the order of G is five, then all elements of G, apart from the identity, are generators of G.
[4 marks]

